
Vol. 1 · No. 4 · October 2007 www.PharmaIT.co.uk 25

Pharma IT Journal

A Pragmatic Approach to the
Testing of Excel Spreadsheets

By David Harrison & David A Howard

Many GxP critical spreadsheets need to undergo validation and testing to ensure that the data they generate
is accurate and secure. This paper describes a pragmatic approach to the testing of Excel spreadsheets
using a novel procedure of ‘live’ testing. Although demonstrated on Excel spreadsheets, this testing
approach provides a flexible solution for testing many data intensive systems, and can be successfully
adapted to databases, LIMS and ERP systems.

Key Words: Validation, Compliance, Spreadsheets, MS Excel, 21 CFR Part 11, Pharmaceutical, GAMP, GxP, GLP, GMP, GCP, End User Computing,
Testing, Qualification

Introduction
This is the final article in the short series of papers describing a
generic process for validating Excel Spreadsheets. This article
describes the practices and procedures that can be used to
test Excel spreadsheets and to ensure they are maintained in a
compliant state. Previous articles in this series have given an
overview[1] of the validation process and a description of the
specification phase[2].

Terminology
In traditional computer systems validation the terms Functional
Testing (FT), Installation Qualification (IQ), Operational
Qualification (OQ) and Performance Qualification (PQ) are used
as an approximation to the traditional software development
lifecycle (SDLC) model used for computer systems validation.

In this approach we actually advocate a single document
that qualifies a spreadsheet for use, and are cautious of the fact
that the terminology IQ, OQ, PQ tends to imply separate
unique deliverables whereas in fact they should merely signify

logical stages in the qualification process. We are not aware of
any regulatory requirement dictating the use of terminology IQ,
OQ, PQ, or of the requirement for separating these activities.
To reinforce this thinking it is our understanding that this
terminology will be removed from the forthcoming GAMP[3]

guidelines (version 5).
If internal company policy dictates the necessity for separate

qualification deliverables then the generic process is sufficiently
flexible to allow for separate deliverables. We see no benefit of
having separate deliverables, it will have no impact on the
quality of the final spreadsheet and the additional
documentation adds to the cost of the project and makes
documentation traceability more complex.

Spreadsheet Qualification
This Spreadsheet Validation process uses an amended V
model, Figure 1, as highlighted in the overview article[1].

The streamlined qualification process is designed to confirm
that the spreadsheet calculates accurate results, and is installed
and operates as defined in the specification document[2].

User
Acceptance

Prototyping Design/Build Live Operation

URS

FS

Single
Spreadsheet
Specification

Document

Test
Installation

OQ/PQ

Single
Spreadsheet
Qualification
Document

IQ

Functional
Testing

Figure 1: Amended V model for Excel Spreadsheet Validation

Testing of Excel Spreadsheets Pharma IT Journal

26 www.PharmaIT.co.uk Vol. 1 · No. 4 · October 2007

The validation process places significant focus upon
documents that are generic in nature, allowing rapid
deployment and minimising document preparation time. This is
vital when applied to a large portfolio of spreadsheets.

Spreadsheet Qualification Protocol
The qualification document is designed to:
• be generic where possible to simplify generation
• be versatile and flexible both in format and scope for

spreadsheets of various complexity (simple through to
complex macros)

• correlate and document all 21 CFR Part 11[8] testing to
remove the need for a separate document

• be adaptable to meet local/company requirements or other
regulatory needs

The core document consists of the following sections:
• Main Body
• Appendix A – Spreadsheet Functional Testing
• Appendix B – Spreadsheet Installation Qualification
• Appendix C – Operational/Performance Qualification
• Appendices D & E– Additional Data Sheets (blank forms for

completion)
• Appendix F – Traceability Matrix
• Appendix G – Qualification Report
The design uses appendices for the ‘traditional’ deliverables,
and allows the flexibility to add or remove sections if required.
Further details on the document sections are provided below.

Main Body
The core document text provides an overview of the
spreadsheet being validated and provides information about
the philosophies for testing, documentation and change
control. It will also contain a glossary and references to other
documentation relating to the validation.

In practice it has been found that the majority of this section
will be identical for all spreadsheets within a company/
department.

Appendix A – Spreadsheet Functional Testing
“Functional” testing of the spreadsheets is the key task for
successful validation using this particular approach. This
appendix is designed to demonstrate the correct functionality
of the spreadsheet as highlighted below.
• Testing the structure of the spreadsheet. This ensures

that the correct data is being used in the spreadsheet
calculations and formulae, i.e. when you are performing a
mean of 10 values, that the correct ten values are
referenced in the calculation formula. This is a common
error caused by drag and drop errors when generating
spreadsheets.

• Testing the calculations in the spreadsheet. This
ensures that the actual calculation formula is correct in the
spreadsheet, i.e. when you have a calculation to multiply by
a fixed value of 365, that it is in fact a multiplication and that
the value is 365. These are common errors caused by
typographical errors when generating spreadsheets.

• Testing any macros in the spreadsheet. This ensures
that any processes controlled by macros operate as
specified. Macros can be complex with multiple paths
through them and errors are common in the logic used.

Usually the items above are inherently interlinked, and they can
not be tested separately. However it is worth making these

distinctions as it helps in understanding how to test
spreadsheets, and also where to focus your effort when
looking for potential errors.

For the vast majority of spreadsheets the functional testing
can be executed outside of the final operating environment.
Only when macros are used, or links to other spreadsheets or
systems are involved do you need to worry about testing in the
final environment.

The following subsections cover the functional testing and
are divided into separate test scripts.

Environment Recording
As functional testing may be performed outside of the final
environment the details of the test environment and
spreadsheet file being tested are recorded.

We believe it is usually preferable to validate a spreadsheet
template (.xlt) file rather than a workbook (.xls) file. Templates
can be validated, secured and used to create multiple
‘validated’ spreadsheets.

It is also essential to have reliable file naming, storage, and
change control procedures, particularly when testing is taking
place outside of the final environment. We recommend the use
of a secure file repository or write-once optical storage medium
to minimise the risk of file changes between functional testing
and installation.

Optional sections also record any additional controls (e.g. 3rd

party add-ins) where appropriate.

Manual Testing of Spreadsheet Calculations and
Functionality
The traditional ‘wordy’ step-by-step approach to protocol
design is impractical and unnecessary when applied to the
majority of spreadsheets. The step-by-step approach is not
ideal because:
• Writing the protocol steps usually takes much longer than

actually executing them and therefore you spend little time
testing and a lot of time writing protocols

• Suitable test data for spreadsheets can be difficult to fully
define in advance. For example:
º envisage the situation where a calculation is to mean three

values A = AVERAGE(X:Y:Z)
º The test data that you have been presented with (perhaps

from a live test run) has X=25, Y= 25, and Z=25.
º Your resulting calculation gives you an answer of A=25.
º Although this result is correct, it leaves some doubts as to

whether the calculation was correctly structured. Perhaps
it was A = AVERAGE(X:Y) or A = AVERAGE(Y:Z), this can
easily happen with drag and drop errors.

º It would make more sense to use differing data values
such as X=20, Y=23, and Z=29. A correct result from this
data set would be a lot less like to occur by error.

Spreadsheets are full of situations like this, and normally a
single set of test data will never fully check the structure and
calculation adequately. The answer is not necessarily to use
multiple predefined data sets however, as the complexity of
spotting these situations in advance is immensely time-
consuming.

Because of the concerns above, spreadsheet testing is best
performed using flexible data entries to allow for differing data
inputs and the ability to stress test the spreadsheet. Line by line
descriptions of this flexibility is very difficult to write, it normally
relies on the testers initiative and curiosity.

Pharma IT Journal Testing of Excel Spreadsheets

Vol. 1 · No. 4 · October 2007 www.PharmaIT.co.uk 27

An Example of Manual Testing
A simple example spreadsheet is depicted in Figure 2 showing
the calculation of averages for multiple rows.

Figure 2: Example Spreadsheet.

The Spreadsheet Specification described previously[2] would
have specified all the calculations in the User Requirements
Table appendix. In this example the specification would
define two calculations as summarised below in Figure 3:

Calc. Cell Name No. Comments
Ref. Description Cells
A.1.1 Average 6 Provides an average of up to 4 readings for each

data set
A.1.2 Overall Average 1 Provide an overall average of all Average values

Figure 3: Example User Requirements Table.

The ‘Manual Testing’ process allows the tester the flexibility to
perform appropriate tests with a set of representative test data.
This data is used, but can be deviated from if the tester sees
situations that don’t give complete confidence in the generated
results.
In this example the test data is shown in Figure 4.

Figure 4: Example Test Data.

The goal of ‘manual testing’ is to verify that the spreadsheet
gives the same result as if performed by a manual
calculation. i.e. that the spreadsheet gives the same result as
you get if you performed the calculation on paper or by
calculator.

The tester would input the test data into the spreadsheet to
confirm the calculation in cell F2. It would be apparent to the
tester that the calculation in cell F2 is repeated down to F7, and
therefore to shorten the process, the input can be repeated for
all the identical Average cells (F2:F7) by a simple copy/paste of
the same data values as shown in Figure 5. A screen shot of
the results would be taken.

Figure 5: Spreadsheet Calculation Confirmation of Cells F2:F7

To confirm the spreadsheet is giving the correct result the
tester would then manually calculate an average of 24.2, 26.3,
25.1 and 24.6 (using a calculator) and show the working
and result onto a manual calculation form (a paper form in the
protocol) as shown in Figure 6 (Test No.1). This shows the
tester what the correct result should be and confirms that the
spreadsheet result matches a manual calculation. The tester
has documented evidence of both processes/results.

Figure 6: Manual Calculation Confirmation of Cells F2:F7

The Overall Average calculation in cell F8 is a different
calculation, and the use of the test data in Figure 5 would be
inappropriate. Therefore, the tester would use their initiative
and verify this calculation using different data such as that
shown in Figure 7. This data ensures the calculation is correctly
challenged.

Figure 7: Spreadsheet Calculation Confirmation of Cells F8

The subsequent manual calculation is show in Figure 8 (Test
No.2).

Figure 8: Manual Calculation Confirmation of Cell F8

Testing of the above example can be performed with 2
screenshots, and 2 sets of entries on the generic form. If the
same example was defined by a step-by-step protocol
approach, it would probably require dozens of steps, and
multiple sets of test data to give the same conclusion. It is vital
to note that this is a very simple example, and the more
complicated the spreadsheet becomes, the more difficult it is
to write step-by-step protocols. The approach described
above will work flexibly for any sized spreadsheet and any
complexity. It is easy to adapt the use of the manual testing
approach to deal with logical statements, drop down
selections, conditional formatting and data validation.

Testing of Excel SpreadsheetsSoftware Patching Pharma IT Journal

28 www.PharmaIT.co.uk Vol. 1 · No. 4 · October 2007

The philosophy here is to spend your time testing
rather than spending your time writing test scripts.

The approach is extremely adaptable to a wide range of
scenarios and is heavily dependent upon the competence
and experience of the tester, therefore controls need to be in
place to minimise the risks introduced by such flexibility. The
following points are crucial to ensure the accuracy and
integrity of your generated results and conclusions.
• Testers must be trained and familiar with both Excel, validation

requirements, and the manual calculation methods.
• An SOP on the testing process is recommended which

includes examples recommended to check different
spreadsheet scenarios.

• Pre-specified data should be used where possible when
performing calculations, we recommend attaching
representative test data to the test script to allow the
tester to select typical data.

• The tester should fully understand the spreadsheet and
have the initiative to challenge and stress test it. This is
something that normally does not occur when testers are
instructed to follow a line-by-line test procedure. In the
traditional approach testers follow the prewritten steps
and see what the protocol tells them to see. We feel that
the approach defined here frees up a lot of additional
testing time, and that the tester can invest this time in
actually challenging the system.

• Be aware of the multiple possibilities to further streamline
the generation of results such as using a single screenshot
to test multiple calculations, or to copy and paste data
from one sheet to another.

• There are many situations where clever thinking or
experience is required to deal with an individual
spreadsheet or calculations. All situations can be dealt
with as shown by the examples below:
º Data rounding issues may arise depending on the test

data used, be prepared to alter the number formats to
verify calculations

º To ‘manually’ verify complex calculations use a separate
instance of Excel or a different statistical package; the
formulae should not be copied, but redeveloped from
first principals

º Logical checks, conditional formatting, data validation
etc. can often be verified with a string of screenshots
which get annotated with their purpose once printed

• Throughout the testing the following important rules
should be followed:
º Justify and document any assumptions made during

the testing; use risk based judgements whenever
possible to make it easy to explain your logic to an
auditor

º Be flexible, yet consistent throughout the testing

Undertaking the ‘manual testing’ will be the most time
consuming testing activity and the most technically
demanding. The generic nature of the approach however
ensures minimal document preparation time and focuses
the majority of the qualification activity on the task of
testing.

Data Generation/Formatting
Once the detailed spreadsheet functionality has been
verified, a check is performed of the fully populated
spreadsheet. This checks data formats and general
spreadsheet layout and additionally provides a ‘before
installation’ snapshot. This snapshot is used later to verify
that the spreadsheet has not been modified during its move
into its final operating environment.

Macro testing
This section is only applicable if macros are present in the
spreadsheet. Macro functionality is defined as GAMP
category 5 (custom programming), and as such requires
extensive verification. In this case, generic test scripts are not
appropriate and a traditional ‘step-by-step’ approach is
necessary for the macro components.

Macro testing is performed following a ‘black box’
approach, where inputs are checked against outputs. For this
type of testing it is usually expected to perform testing of all
possible routes through the macro, and although this may
sound daunting, most spreadsheet macros are small and
straightforward to test.

Vol. 1 · No. 4 · October 2007 www.PharmaIT.co.uk 29

Pharma IT Journal Testing of Excel Spreadsheets

!

Appendix B – Spreadsheet Installation Testing
This appendix typically consists of two, relatively short,
generic test scripts. The first records and verifies the
installation of the spreadsheet template into the final
operating environment. The second verifies the security of
the spreadsheet and the application of any necessary audit
trails and date/time stamping functionality.

Appendix C – Operational/Performance Testing
Completion of the qualification of the spreadsheet is achieved
in this appendix which performs the following:
• Confirmation that critical documentation is present, this

includes SOP’s, Specifications, User Training records and
Backup/Restore procedures.

• A ‘double check’ confirmation that the spreadsheet
operates correctly in the final environment and that
nothing has affected or altered since it was thoroughly
tested in the functional testing stage.
º The spreadsheet is not tested in great detail, but it is fully

populated with data and compared back to the
functional testing stage to confirm that it gives identical
outputs to those generated in Appendix A.

• If macros are present additional tests similar to those
performed in Appendix A would be executed to confirm
that the macros have not been affected by the
spreadsheets installation into the final operating
environment.

Appendix D / E – Additional Data Sheets
These two Appendices are single pages that can be
photocopied and appended to test scripts.
• Appendix D is a blank ‘Additional Observation Sheet’ that

may be used for any pertinent information.
• Appendix E is a blank ‘Manual Calculation Sheet” for use

within Appendix A.

Figure 10: Traceability Matrix- Manual Calculations

Appendix F – Traceability Matrix
In this streamlined approach the Requirements Traceability
Matrix (RTM) is also integrated into the protocol for completion
once all testing is complete. The RTM is divided into two
sections, the first deals with tracing back to the high level User
Requirements such as testing of security and approval methods.
An example extract is shown in Figure 9. This part of the RTM
benefits significantly from the use of consistent, generic
specification and qualification documents. In practice we find
that there is rarely any need to update this section of the RTM.

The second section of the RTM is finalised manually after
completion of the Manual Testing. It traces back the
spreadsheets calculations to the location and pages where
they were tested. Using the very simple example shown
earlier, this section of the RTM would be completed as shown
in Figure 10.

Appendix G – Qualification Report
The final Appendix is a short Qualification Report, avoiding
the need for a separate summary/final report and ensuring
that all documentation is kept in one place. This further
streamlines the process by avoiding the need for a separate
set of approval signatures.

Performance and Compliance Monitoring
We advocate the use of regular performance and compliance
monitoring reviews to ensure that the spreadsheets remain in
a compliant state. Most regulated companies perform on-
going ‘reviews’ of computer systems at one or two year
intervals, these are a regulatory necessity and typically assess
areas such as:
• Change control records
• System error records
• User access lists/training records
• Unauthorised access attempts
• User comments and enhancement requests

Figure 9: Traceability Matrix - High Level Generic User Requirements.

Pharma IT Journal Testing of Excel Spreadsheets

Vol. 1 · No. 4 · October 2007 www.PharmaIT.co.uk 31

Maintaining compliance of spreadsheets is however
difficult due to Excels flexibility and the ability for users to
modify content. If spreadsheets are regularly changing then
the monitoring process becomes arduous and the risks to
operational use are significantly increased.

The majority of spreadsheets we have implemented have
built in protection and audit-trails[4] and this makes it easier to
focus on the ‘high-risk’ areas within spreadsheets such as
data/formula overwriting and modification of protection. The
difficulty however is scheduling in these reviews, and
although the data is available for review, it requires regular
manual/procedural activities to audit and identify areas of
concern. An alternative approach is to implement systems[5]

that automate the reporting of the audited events (such as
generating system alerts when passwords are removed).

In all cases such software additions greatly facilitate
performance and compliance monitoring of spreadsheets
and help to increase confidence in the use of spreadsheet in
regulated industries.

Risk Based Validation
The current FDA thinking emphasises the value and benefit of
risk based validation and we are often asked if we perform
increased validation and testing on the more critical
spreadsheets. In most cases we do not unless a spreadsheet
is particularly complex. Undertaking a risk assessment (and
report) is usually more time consuming than the additional
effort of actually undertaking a full validation of the
spreadsheet. In our testing process we check all calculations,
and we find that because we don’t write step-by-step test
scripts we have the time to test every calculation thoroughly.
Therefore every (GxP critical) spreadsheet gets a complete
validation with detailed review of all calculations, and
although this sounds daunting it is rare for the testing to take
more than a few hours, and even very complex spreadsheets
take less than 2 days.

For the future we do see benefits in the use of spreadsheet
audits instead of repetitive calculation testing. Although we
have not seen this approach used significantly, we have

considered it and think that it is viable. We see the use of
auditing in two separate areas:
• Spreadsheet accuracy auditing. Developer checks and

peer reviews are commonly performed during spreadsheet
development and specification, yet it is rarely formally
documented. There are a number of tools available [6, 7] to
aid the auditing process and to assist in the confirmation
of a spreadsheet’s accuracy. We believe there is scope
for the increased use of such audits to replace some
calculation testing. We do, however, believe that there is
still a necessity to independently demonstrate that critical
calculations or functionality are accurate.

• Spreadsheet performance auditing. The use of
automated tools has been discussed in a previous section
(Performance and Compliance Monitoring).

Conclusion
Testing of Excel spreadsheets can be time consuming, and it
can be difficult to determine the depth at which to test. The
use of traditional step-by-step test scripts makes the protocol
writing stage arduous, which leads to a rigid and often
unchallenging testing process. The approach recommended
in this paper uses a generic ‘manual testing’ form which
allows the tester to thoroughly check the spreadsheet and
stress test with suitable data. The time saved in not writing
lengthy test scripts is invested into undertaking a complete
and very thorough qualification which ensures the
spreadsheet is fit for purpose and will satisfy regulatory audit.
This testing approach provides a flexible solution for testing
data intensive systems, and can be successfully adapted to
databases, LIMS and ERP systems.

Maintaining compliance is vitally important, and is an area
that is currently under performed in the industry. Procedural
processes combined with software tools are recommended
to ensure that the validation status is maintained. "

More information on spreadsheet validation can be found at
http://www.spreadsheetvalidation.com

David Harrison BSc MBA
Principal Consultant.

ABB Engineering Services
PO Box 99

Billingham, TS23 4YS
United Kingdom

+44 (0)1207 544106 (Office)
+44 (0)7957 635046 (Mobile)
david.harrison@gb.abb.com

www.abb.com/lifesciences

Dave Harrison is a Principal Consultant at ABB Engineering Services
where he is the Product Manager for spreadsheet validation solutions.

David Howard
BSc CChem MRSC.

Validation Consultant.
ABB Engineering Services

PO Box 99
Billingham, TS23 4YS

United Kingdom
+44 (0)1937 589813 (Office)

+44 (0)7740 051595 (Mobile)
david.howard@gb.abb.com
www.abb.com/lifesciences

Dave Howard is a Validation Consultant at ABB Engineering Services,
specialising in End User Computing applications.

1 David A Howard & David Harrison, ABB Engineering Services “A Pragmatic
Approach to the Validation of Excel Spreadsheets – Overview” Pharma IT
Journal, Vol. 1 No. 2 April 2007.

2 David Harrison & David A Howard, ABB Engineering Services “A Pragmatic
Approach to the Specification of Excel Spreadsheets” Pharma IT Journal, Vol.
1 No. 3 July 2007.

3 Good Automated Manufacturing Practice Guide, Version 4, ISPE, Tampa FL,
2001

4 DaCS™, Data Compliance System, Compassoft Inc.
http://www.spreadsheetvalidation.com/solutions/dacsproduct.htm

5 Enterprise Spreadsheet Management Software, ClusterSeven Inc.
http://www.clusterseven.com.

6 Exchecker™, Compassoft Inc, http://www.compassoft.com/exchecker.htm.
7 PUP, Power Utility Pack, J-Walk & Associates. http://j-walk.com/ss/pup
8 FDA 21 CFR 211, Current Good Manufacturing Practice Regulations for

Finished Pharmaceutical Products.

References:

